Thursday, January 5, 2017

Vulcanization kinetics and mechanical properties of acrylonitrile butadiene rubber (NBR) composite

Kinetika vulkanisasi dan sifat mekanis komposit acrylonitrile butadiene rubber (NBR)

Arum Yuniari, Ike Setyorini, Hesty Eka Mayasari


Abstract


The aim of this research was to study the effect of vulcanization temperature on mechanical properties and curing kinetics of NBR composites. The composites were formulated by using two types of carbon black i.e. N-330 and N-774. The curing kinetics was determined using Moving Die Rheometer. The network formation processes were related to torque and time. The vulcanizates were obtained by compression molding in a hydraulic press at 150°C and 160°C. The mechanical properties observed include tensile strength, elongation at break, hardness, and tear strength. Kinetics studies were approached by Arrhenius equation and the reaction mechanism was assumed following first order reaction. The results showed that curing kinetics can be approached by the equation from the rheometer data. The surface area of carbon black strongly influenced the mechanical properties and rate constant (k) of NBR composite. Carbon black N-330 can be used as a desirable reinforcing filler which gave a higher mechanical properties than the other type of carbon black.
Keywords: curing kinetics, NBR, temperature, mechanics.

Full Text:

PDF

References


Ahmed, K., Nizami, S. S., Raza, N. Z., & Shirin, K. (2012). Cure characteristics, mechanical and swelling properties of marble sludge filled EPDM modified chloroprene rubber blends. Advances in Materials Physics and Chemistry, 2, 90-97. http://dx.doi.org/10.4236/ampc.2012.22016
Akhlaghi, S., Hedenqvist, M. S., Conde Brana, M. T., Bellander, M., & Gedde, U. W. (2015). Deterioration of acrylonitrile butadiene rubber in rapeseed biodiesel. Polymer Degradation and Stability, 111, 211-222. http://dx.doi.org/10.1016/j.polymdegradstab.2014.11.012
Allegra, G., Raos, G., & Vacatello, M. (2008). Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement. Progress in Polymer Science, 33(7), 683-731. http://dx.doi.org/10.1016/j.progpolymsci.2008.02.003
Chung, J. W., Han, S. J., & Kwak, S. (2008). Dynamic viscoelastic behavior and molecular mobility of acrylonitrile–butadiene copolymer nanocomposites with various organoclay loadings. Composites Science and Technology, 68(6), 1555-1561. http://dx.doi.org/10.1016/j.compscitech.2007.10.025
Fathurrohman, M. I., Maspanger, D. R., & Sutrisno, S. (2015). Vulcanization kinetics and mechanical properties of ethylene propylene diene monomer thermal insulation. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 104-110. http://dx.doi.org/10.9767/bcrec.10.2.6682.104-110
Gerspacher, M. (2009). Advanced CB characterizations to better understand polymer-filler interaction: A critical survey. Kautschuk Gummi Kunststoffe, 62(5), 233-239.
Hasan, A., Rochmadi, Sulistyo, H., & Honggokusumo, S. (2012). The effect of rubber mixing process on the curing characteristics of natural rubber. Makara Journal of Technology, 16(2), 109-115. http://dx.doi.org/10.7454/mst.v16i2.1508
Hasan, A., Rochmadi, Sulistyo, H., & Honggokusumo, S. (2013). Vulcanization kinetics of natural rubber based on free sulfur determination. Indonesian Journal of Chemistry, 13(1), 21-27.
Indrajati, I. N., Dewi, I. R., & Irwanto, D. (2012). Pengaruh variasi rasio HAF/SRF terhadap sifat vulkanisat NBR. Majalah Kulit, Karet, dan Plastik. 28(2), 59-68. http://dx.doi.org/10.20543/mkkp.v28i2.106
Jovanović, V., Budinski-Simendić, J., Samarzija-Jovanović, S., Marković, G., & Marinović-Cincović, M. (2009). The influence of carbon black on curing kinetics and thermal aging of acrylonitrile-butadiene rubber. Chemical Industry & Chemical Engineering Quarterly, 15(4), 283-289. http://dx.doi.org/10.2298/CICEQ0904283J
Jovanović, V., Samarzija-Jovanović, S., Budinski-Simendić, J., Marković, G., & Marinović-Cincović, M. (2013). Composites based on carbon black reinforced NBR/EPDM rubber blends. Composites Part B: Engineering, 45(1), 333-340. http://dx.doi.org/10.1016/j.compositesb.2012.05.020
Karaagac, B., Inal, M., & Deniz, V. (2009). Artificial neural network approach for predicting optimum cure time of rubber compounds. Materials & Design, 30(5), 1685-1690. http://dx.doi.org/10.1016/j.matdes.2008.07.010
Li, Z. H., Zhang, J., & Chen, S. J. (2008). Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Express Polymer Letters, 2(10), 695-704. http://dx.doi.org/10.3144/expresspolymlett.2008.83
Marković, G., Marinović-Cincović, M., Radovanović, B., & Budinski-Simendić, J. (2007). Rheological and mechanical properties of wood flour filled polyisoprene/chlorosulphonated polyethylene rubber blends. Chemical Industry & Chemical Engineering Quarterly, 13(4), 186-191. http://dx.doi.org/10.2298/CICEQ0704186M
Mostafa, A., Abouel-Kasem, A., Bayoumi, M. R., & El-Sebaie, M. G. (2009). The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature. Materials & Design, 30(3), 791-795. http://dx.doi.org/10.1016/j.matdes.2008.05.065
Rajasekar, R., Pal, K., Heinrich, G., Das, A. & Das, C. K. (2009). Development of nitrile butadiene rubber–nanoclay composites with epoxidized natural rubber as compatibilizer. Materials & Design, 30 (9), 3839-3845. http://dx.doi.org/10.1016/j.matdes.2009.03.014
Rattanasom. N., & Prasertsri, S. (2009). Relationship among mechanical properties, heat ageing resistance, cut growth behaviour and morphology in natural rubber: Partial replacement of clay with various types of carbon black at similar hardness level. Polymer Testing, 28(3), 270-276. http://dx.doi.org/10.1016/j.polymertesting.2008.12.010
Semsarzadeh, M. A., Bakhshandeh, G. R., & Ghasemzadeh-Barvarz, M. (2005). Effect of carbon black on rate constant and activation energy of vulcanization in EPDM/BR and EPDM/NR blends. Iranian Polymer Journal, 14(6), 573-578.
Toth, W. J., Chang J. P., & Zanichelli, C. (1991). Finite element evaluation of the state of cure in a tire. Tire Science and Technology, 19(4), 178-212. http://dx.doi.org/10.2346/1.2141715
Yuan, X., Shen, F., Wu, G., & Wu, C. (2007). Effects of acrylonitrile content on the coordination crosslinking reaction between acrylonitrile–butadiene rubber and copper sulfate. Materials Science and Engineering: A, 459 (1-2), 82-85. http://dx.doi.org/10.1016/j.msea.2007.01.036
Zaimova, D., Bayraktar, E., & Dishovsky, N. (2011). State of cure evaluation by different experimental methods in thick rubber parts. Journal of Achievements in Materials and Manufacturing Engineering, 44(2), 161-167.

No comments:

Post a Comment